Factors Influencing the Stability of Cations (Amine-H-amine)⁺ and Related Ions

CHRISTOPHER GLIDEWELL* and H. DIANE HOLDEN

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.

Received September 14, 1981

The existence of the hydrogen-bonded cations $(L-H-L)^{+}$ where L represents pyridine or a substituted pyridine, was first suggested for salts of lanthanoid chelates $L_2H \cdot Ln(hfaa)_4$ (Ln = lanthanoid; hfaa = $CF_3COCHCOCF_3$ and tetraphenyl borates $L_2H \cdot BPh_4$ [1]. This suggestion was not supported by definitive evidence, although ESCA data indicate a difference between the nitrogen environments in 4-Mepy·HCl (4-Mepy = 4-methylpyridine) and in 4-MepyHBPh₄·4-Mepy: the N (1s) binding energy in the tetraphenyl borate is 399.6(1) eV, mid-way between the values in 4-Mepy, 398.1(1) eV and 4-Mepy·HCl, 400.2(1) eV. Proof of the existence of such a cation was provided by an X-ray analysis of $(4-\text{Mepy})_2\text{H}^+\text{BPh}_4^-$ [2] which revealed a strongly hydrogen-bonded planar cation lying across a crystallographic centre of inversion with a very short N····N distance of 2.610(15) Å, and having the unique hydrogen located at the centre of symmetry. This finding has prompted a further study of the factors which influence the stability of cations of this type, no other examples of which appear to be known: it may be noted here that no evidence was obtained [1] for the persistence of these cations in solution.

We consider first the nature of the counter-ion X^- : for the decomposition of a crystalline salt (LHL)X into crystalline (LH)X and liquid (or gaseous) L, we may write, from a Born-Haber cycle:

$$\Delta H^{\varphi} = +D(LH^{*} - L) - \Delta H_{L}^{\varphi} - [U(LH \cdot X) - U(LHL \cdot X)]$$

where $D(LH^* - L)$ represents the gas-phase dissociation enthalpy of LHL⁺ in LH⁺ and L; ΔH_L^{ϕ} represents the enthalpy of vaporisation of liquid L; if L is a gas in its standard state (*e.g.* if L = NH₃) ΔH_L^{ϕ} will be set equal to zero; U(LH·X) and U(LHL·X) represent the lattice energies of LH·X and LHL·X respectively.

Unless L is a gas in its standard state $\Delta S^{\phi} \cong 0$, so that $\Delta G^{\phi} \cong \Delta H^{\phi}$.

Since LH^{*} is always smaller than LHL^{*}, the term $\Delta U = [U(LH \cdot X) - U(LHL \cdot X)]$ is always positive; hence the only contribution which can make ΔH^{ϕ} positive, and hence ΔG^{ϕ} positive, thereby stabilising the salt (LHL)X is $D(LH^* - L)$. ΔH^{ϕ}_{L} is small, and for a given value of $D(LH^* - L)$ the stability is maxi-

Introducing Kapunstinskii's approximation for the lattice energy [3], we may write

$$\Delta U = 2k \left[\frac{1}{r(LH) + r(X)} - \frac{1}{r(LHL) + r(X)} \right]$$

mised if ΔU is minimised.

where $k \approx 1050 \text{ kJ mol}^{-1}$, and the r represent thermochemical radii [4].

Hence,

$$\Delta U = 2k \left[\frac{r(LHL) - r(LH)}{(r(LH) + r(X))(r(LHL) + r(X))} \right]$$

We now introduce the further approximation that the radius ratio of the cations LHL^+ and LH^+ is constant, *i.e.*

$$r(LHL) = p \cdot r(LH)$$

where p is a constant greater than unity. So that

2k(p-1)r(LH)

$$\Delta U = \frac{1}{p[r(LH)]^2 + (p+1)r(LH)r(X) + [r(X)]^2}$$

Now ΔU is a minimum when $\partial(\Delta U)/\partial r(LH)$ is zero, that is when $[r(X)]^2 = p \cdot [r(LH)]^2$: re-introducing p = r(LHL)/r(LH) leads to the condition for minimisation of ΔU that

$$r(LHL) \cdot r(LH) = [r(X)]^2$$

Hence to minimise ΔU , large LH⁺ and LHL⁺ require a large counter-ion X⁻, and small LH⁺, LHL⁺ require a small X⁻, in all cases such that r(X) is the geometric mean of r(LH) and r(LHL).

We turn now to the term $D(LH^* - L)$, representing the enthalpy change of the gas-phase reaction

$$LHL_{(g)}^{\dagger} \rightarrow LH_{(g)}^{\dagger} + L_{(g)}$$

We have calculated ΔH_f^{ϕ} values, using the MNDO method [5, 6] with full geometry optimisation, for L, LH⁺ and LHL⁺ for a selection of bases, L, and ΔH_f^{ϕ} values together with $d(L - H^+)$ and $D(LH^+ - L)$ values, calculated using $\Delta H_f^{\phi}(H^+) = 1528.0$ kJ mol⁻¹ [7] are given in Table I. As expected the values of $D(L - H^+)$ indicate that NF₃ is a much weaker base than the remaining amines: the ordering of the

^{*}Author to whom correspondence should be addressed.

L	$\Delta H_{f}^{\phi}(L)$	$\Delta H_{f}^{\phi}(LH^{*})$	$\Delta H_{f}^{\phi}(LHL^{+})$	D(L – H ⁺)	$D(LH^* - L)$
NH ₃	-26.3 ^a	+689.2	+644.5	+812.5	+18.4
NF ₃	143.1 ^b	+1018.8	+943.9	+366.1	-68.2
ру	+120.2 ^c	+785.7	+912.3	+862.5	-6.4
4-Mepy	+86.9	+747.0	+840.5	+867.9	-6.6
Me ₃ N	-11.6 ^d	+728.5	+822.1	+787.9	-105.2
H ₂ NCHCH ₂	+58.7	+769.4	e	+817.3	

TABLE 1. Molecular Energies for LH^+ and LHL^+ (All values in kJ mol⁻¹).

^aExperimental value, -45.6 [8]. ^bExperimental value, -124.7 [9]. ^cExperimental value, +144.8 [8]. ^dExperimental value -23.8 [8]. ^eDissociates.

other values has to be viewed in the light of the probable errors in the two calculated values, $\Delta H_{f}^{\varphi}(L)$ and $\Delta H^{\varphi}(LH^{+})$, since the differences between the several values of $D(L - H^{*})$ are fairly small: where experimental values of $\Delta H_{f}^{\phi}(L)$ are available, they indicate typical calculated errors in the range ±20 kJ mol⁻¹. This means that the calculated values of $D(LH^{+} - L)$, each of which is the small difference between two large quantities, may be qualitatively in error if they are close to zero. The value of D(LH⁺ - L) for NH₃ is positive as expected [10], while that for NF₃ is large and negative, indicative of the very low basicity of this amine: however the calculated values of py and 4-Mepy are small and negative whereas they are expected to be small and positive. For small values of $D(LH^{+} - L)$, it is unlikely that any computational technique at present available can make reliable predictions of the sign of this term.

The calculated structures of $(NH_3)_2H^*$ and $(NF_3)_2H^*$ both had exact D_{3d} symmetry in which the N-H distances were 1.277 Å and 1.381 Å respectively: the symmetric N-H-N fragment is found also in $(4\text{-Mepy})_2H^*$, where the N-H distance is 1.269 Å, but in py_2H^* there is an unsymmetric minimum in which the two N-H distances are 1.296 Å and 1.246 Å, giving an overall N···N distance of 2.544 Å, virtually identical with the 2.538 Å found in $(4\text{-Mepy})_2H^*$. For both of these aromatic cations, the isolated ion is calculated to have the two rings perpendicular, presumably due to repulsions between *ortho* hydrogens, with a barrier to planarity in the 4-methyl compound calculated as 5.7 kJ mol⁻¹, so that this is easily overcome in the crystal to give the observed planar cation.

Somewhat analogous to these cations are species $(L-X-L)^*$ where X = halogen, several salts of which have been structurally characterised [11-14] for X = Br or I. Although MNDO calculations are not yet possible for species containing bromine or iodine, we have made calculations for some species $(LX)^*$ and $(LXL)^*$ for X = Cl: in general, calculations with X = F failed to achieve self-consistence. The resulting

TABLE II. Molecular Energies for LCl^{*} and LClL^{*} (All values in $kJ \text{ mol}^{-1}$).

L	$\Delta H_{f}^{\phi}(L)$	$\Delta H_{f}^{\phi}(LCl^{\dagger})$	$\Delta H^{\phi}_{\mathbf{f}}(\mathrm{LClL}^*)$	D(LCl ⁺ – L)
NH ₃	-26.3	+840.1	+666.7	+147.1
NF ₃	-143.1	+1167.0	+1009.9	+14.0
ру	+120.2	+917.1	+928.5	+108.8
Me ₃ N	-11.6	+893.0	+863.4	+18.0

molecular energies are given in Table II: these data indicate that the cations $(LCIL)^*$ are more robust than $(LHL)^*$. Since our limited data indicate also that the dissociation energy is higher for $(LCIL)^*$ than for $(LFL)^*$, it is possible that the energies in $(LBrL)^*$ and $(LIL)^*$ are higher still: it is noteworthy that ions of type $(LIL)^*$ persist in solution and so presumably have high dissociation energies.

References

- 1 C. Glidewell and T. M. Shepherd, J. Inorg. Nuclear Chem., 37, 348 (1975).
- C. Glidewell and H. D. Holden, Acta Cryst., in press.
 A. F. Kapustinskii, Quart. Rev. Chem. Soc., 10, 283 (1956).
- 4 A. F. Kapustinskii and K. B. Yatsimirskii, Zhur. obshchei Khim., 19, 2191 (1949).
- 5 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- 6 W. Thiel, Q C. P. E, XI, 353 (1978).
- 7 J. D. Garcia and J. E. Mack, J. Opt. Soc. Am., 55, 654 (1965).
- 8 JANAF Thermochemical Tables, Dow Chemical Co., Midland, Michigan (1965).
- 9 J. L. Franklin, J. G. Dillard, H. M. Rosenstock, Y. T. Hernon, K. Draxl and F. H. Field, *Nat. Stand. Ref. Data Ser.*, *NBS*, Washington 26 (1969).
- 10 P. Merlet, S. D. Peyerimhoff and R. J Buenker, J. Am. Chem. Soc., 94, 8301 (1972).
- 11 O. Hassel and H. Hope, Acta Chem. Scand., 15, 407 (1961).
- 12 H. Pritzkow, Acta Cryst., B31, 1505 (1975).
- 13 N. W. Alcock and G. B. Robertson, J. Chem. Soc. Dalton, 2483 (1975).
- 14 G. Hung-Yin Lin and H. Hope, Acta Cryst., B28, 643 (1972).